Bayesian inference for conditional copulas using Gaussian Process single index models

نویسندگان

  • Evgeny Levi
  • Radu V. Craiu
چکیده

Parametric conditional copulamodels allow the copula parameters to vary with a set of covariates according to an unknown calibration function. Flexible Bayesian inference for the calibration function of a bivariate conditional copula is introduced. The prior distribution over the set of smooth calibration functions is built using a sparse Gaussian process (GP) prior for the single index model (SIM). The estimation of parameters from the marginal distributions and the calibration function is done jointly via Markov Chain Monte Carlo sampling from the full posterior distribution. A new Conditional Cross Validated PseudoMarginal (CCVML) criterion is used to perform copula selection and is modified using a permutation-based procedure to assess data support for the simplifying assumption. The performance of the estimation method and model selection criteria is studied via a series of simulations using correct and misspecified models with Clayton, Frank and Gaussian copulas and a numerical application involving red wine features. © 2018 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Single Index Models for Conditional Copulas

Parametric conditional copula models allow the copula parameters to vary with a set of covariates according to an unknown calibration function. In this paper we develop a flexible Bayesian method to estimate the calibration function of a bivariate conditional copula. We construct a prior distribution over the set of smooth calibration functions using a sparse Gaussian process (GP) prior for the...

متن کامل

Gaussian Process Vine Copulas for Multivariate Dependence

Copulas allow to learn marginal distributions separately from the multivariate dependence structure (copula) that links them together into a density function. Vine factorizations ease the learning of high-dimensional copulas by constructing a hierarchy of conditional bivariate copulas. However, to simplify inference, it is common to assume that each of these conditional bivariate copulas is ind...

متن کامل

Bayesian quantile regression for single-index models

Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian inference of quantile regression models, we develop a fully Bayesian approach to fitting single-index models in conditional quantile regression. In this work, we use a Gaussian process prior for the unknown nonparametric link function and a Laplace distribution on the index vector, with the latter motivated by the...

متن کامل

Additive models for conditional copulas

Conditional copulas are flexible statistical tools that couple joint conditional and marginal conditional distributions. In a linear regression setting with more than one covariate and two dependent outcomes, we consider additive models for studying the dependence between covariates and the copula parameter. We examine the computation and model selection tools needed for Bayesian inference. The...

متن کامل

Varying-coefficient models with isotropic Gaussian process priors

We study learning problems in which the conditional distribution of the output given the input varies as a function of additional task variables. In varying-coefficient models with Gaussian process priors, a Gaussian process generates the functional relationship between the task variables and the parameters of this conditional. Varying-coefficient models subsume multitask models—such as hierarc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2018